

Hose & Equipment Specs

Hammerhead Industrial Hose

8520 Warren Road Houston, TX 77040 HQ: 713-466-5202 Colorado: 303-532-6179 www.HammerheadHose.com

Hammerhead

Proven, highest quality hose and equipment in the industry! and...

We stand behind our products!

• Others attempt to imitate our hose and equipment and often copy our product names inappropriately

* <u>WARNING</u>: many companies claim 200 psi working pressure even with low burst pressures Don't assume other products have similar properties as Hammerhead (they often make false claims)

"The Right Hose & Equipment Matters"

... use the right hose & equipment for the project

Things to consider:

- Quality of the hose and equipment
- Fresh water vs. produced / recycled water
- Temperature of water and environment
- Water Pressure & Flow Rate
- Terrain & other conditions
- Safety and Environmental

How do they compare?

Oroflex 30 (High quality Polyurethane (TPU))

• better puncture and abrasion resistance

Oroflex 20 (High quality Nitrile Rubber blend)

- better resistance to water with chemicals and high temperatures
- bends easier and with no damage
- returns to original diameter (after expansion due to water pressure)

* <u>WARNING</u>: many companies claim 200 psi working pressure even with low burst pressures Don't assume other products have similar properties as Hammerhead (they often make false claims)

Flow	Friction Loss at a	Loss w/Coupling		
barrels/min]	[psi/ft]]	[psi/mile]	[psi/mile]	
0	0,00	0	0	
3	0,13	1	1	
6	0,27	2	2	
9	0,40	5	5	
12	0,53	8	9	
15	0,66	12	14	
18	0,80	17	19	
21	0,93	23	26	
24	1,06	30	33	
27	1,19	38	41	
30	1,33	46	51	
33	1,46	55	61	
36	1,59	65	72	
39	1,72	76	84	
42	1,86	88	97	
45	1,99	100	111	
48	2,12	114	125	
51	2,25	128	141	
54	2,39	143	157	
57	2,52	159	175	
60	2,65	176	194	
63	2,79	193	212	
66	2,92	212	233	
69	3,05	232	255	
72	3,18	251	276	
75	3,32	272	299	

8" Friction Loss for Oroflex 20

• Theoretical data for fresh water at 68°F

• For the couplings, it is considered an extra 10% friction loss (8 connections per mile)

Flow	Friction Loss at	avg. Working Pressure	Loss w/Couplin
barrels/min]		[psi/mile]	[psi/mile]
0	0,000	0	0
3	0,000	0	0
6	0,000	1	1
9	0,000	2	2
12	0,001	3	3
15	0,001	4	5
18	0,001	6	6
21	0,001	8	9
24	0,002	10	11
27	0,002	13	14
30	0,003	15	17
33	0,003	18	20
36	0,004	22	24
39	0,005	25	28
42	0,005	29	32
45	0,006	33	36
48	0,007	37	41
51	0,008	42	46
54	0,009	47	52
57	0,010	52	57
60	0,011	58	63
63	0,012	63	70
66	0,013	69	76
69	0,014	75	83
72	0,016	82	90
75	0,017	89	98
78	0,018	96	105
80	0,019	101	111
82	0,020	106	116
85	0,021	113	125
88	0,023	121	133
90	0,024	126	139

10" Friation I ass for Oraflax 20

• Theoretical data for fresh water at 68°F

• For the couplings, it is considered an extra 10% friction loss (8 connections per mile)

12"	Friction	Loss for	· Oroflex	20

Flow	Friction Loss at a	vg. Working Pressure	Loss w/Couplings
[barrels/min]	[psi/ft]]	[psi/mile]	[psi/mile]
0	0,0000	0	0
3	0,0000	0	0
6	0,0001	0	0
9	0,0001	1	1
12	0,0002	1	1
15	0,0003	2	2
18	0,0005	2	3
21	0,0006	3	3
24	0,0008	4	4
27	0,0010	5	6
30	0,0012	6	7
33	0,0014	7	8
36	0,0016	9	10
39	0,0019	10	11
42	0,0022	12	13
45	0,0025	13	15
48	0,0028	15	17
51	0,0032	17	19
54	0,0035	19	21
57	0,0039	21	23
60	0,0044	23	25
63	0,0048	25	28
66	0,0052	27	30
69	0,0057	30	33
72	0,0061	32	36
75	0,0067	35	39
78	0,0072	38	42
80	0,0075	40	44
82	0,0079	42	46
85	0,0085	45	49
88	0,0090	48	52
90	0,0095	50	55
92	0,0099	52	57
95	0,0105	55	61
98	0,0111	59	65
100	0,0116	61	67
102	0,0121	64	70
105	0.0128	67	74
108	0,0134	71	78
110	0,0139	74	81
112	0,0144	76	84

• Theoretical data for fresh water at 68°F

• For the couplings, it is considered an extra 10% friction loss (8 connections per mile)

Hammerhead Couplings

- The only coupling allowed by many companies

- Hold & protect far better than any other coupler

Reusable Couplers (Field Installable)

- 4 clamp configuration:
 - Ease of installation
 - Superior radial pressure distribution
- Interlocking fingers
 - Prevents hose pinch and leaks
 - Holds better
- Locking lug:
 - Perfect alignment
 - Secure attachment to nipple
 - Prevents hose bite from coupler due to end pull
- Hose inspection port

Avoid Problems caused by poor quality couplings

Hammerhead Coupling Specs

Field Installable Couplings:

- Extruded Aluminum nipple is machined to shape stronger than cast Aluminum
- 4 clamp segments distribute pressure evenly, prevent hose damage
- A5 aircraft grade bolts don't bend and stretch to prevent coupler from loosening with time
- Interlocking fingers prevent hose pinch & provide superior radial pressure distribution
- Locking lug ensures perfect alignment and prevents clamp slippage
- Chemical resistant options: FracGard coated, hot dip galvanized carbon steel, stainless steel

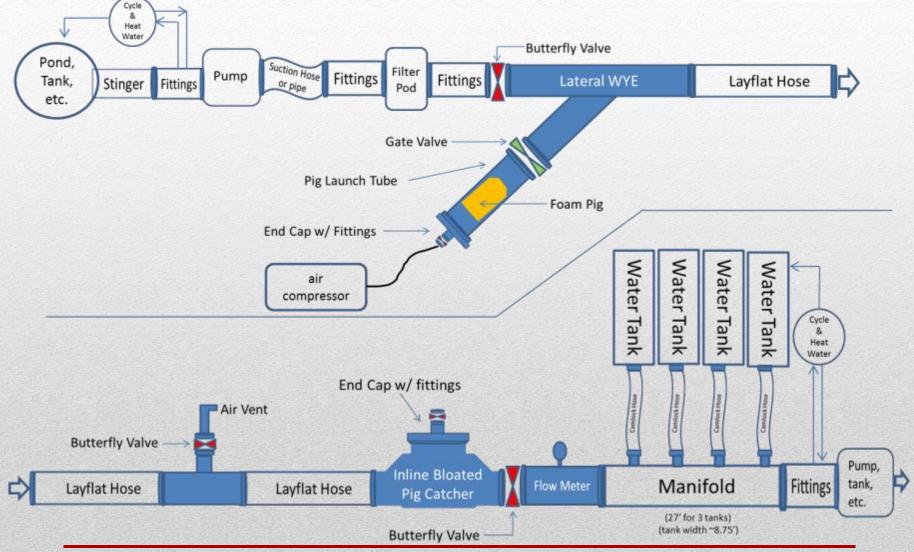
Victaulic Couplings	ID (in)	OD (in)	Length (in)	Weight (lbs)	Working Pressure (psi)
Field Installable 6''	5.25"	8"	6.25″	6	300
Field Installable 8''	7"	10"	6.75"	14	275
Field Installable 10''	9"	12"	7.625"	22.3	250
Field Installable 12''	11"	14"	9.125"	30.4	200

Chemical Resistant options

HAMMERHEAD

* All measurements are per hose end

Pigging can be the most dangerous part of water transfer


Make sure you use quality pigging equipment and have proper training

Water Transfer Diagram

Manifolds, Fittings, Filter Pods, Valves, etc.

<u>Custom Fab Shop</u> for custom fittings of any kind

Aluminum, Galvanized Steel, Poly Pipe

Suction and Specialty Hoses

wide variety available, popular examples below

Heavy Duty PVC Fabric Reinforced Suction & Discharge Hose

Heavy Duty PVC Fabric Reinforced S&D Hose w/ High UV Resistance

150 PSI EPDM General Purpose Water S&D Hose

2,500 PSI Bulk Hose

Crimped fittings on any hose up to 12" diameter

Hammerhead Retrieval Systems

Tugger Trailer System

Reel Based System

Tugger Trailer: ideal when accessible via truck w/ trailer

- Retrieve up to 1 mile of hose with all connectors in tact
- Lay down up to 1 mile of hose in 30 minutes

<u>Reel System</u>: ideal for rough or sensitive terrain

- Hydraulic driven direct drive can attach to skid steerer or telehandeler
- Each Reel holds a 660 ft segment of hose

Many companies use a combination of Tugger Trailers and Reel Systems

CERTIFICATE OF COMPLETION

THIS CERTIFICATE CERTIFIES THAT

BAS COMPLETED Hammerhead Industrial Hose Pigging System Training

Service & Training

March .	
SEAL	2
200, 11 -	

ebruary 25, 2015 DATE

SISNATURE

Field Operations

TITLE

MOBILE CRIMP SERVICE 713.466.5202

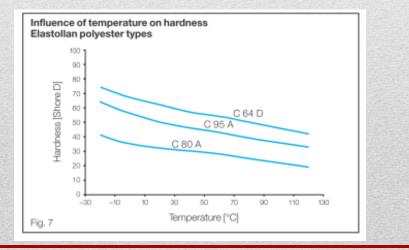
Highest Quality hose on the market

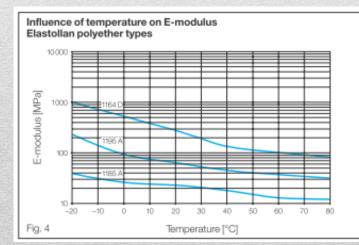
Chemical Resistance

High Pressure

High Temperature

... The future of water transfer




High Temperature, Chemicals

BASF Specs:

- Chemical resistance of polyurethane hoses and composite hoses sleeved with polyurethane. The polyurethane is not recommended for continuous use in contact with water above 40°c (or solutions containing water above 40°c) because of its hydrolising effect. Hydrolysis can also occur with long exposure to:
- a) high humidity at elevated temperatures,
- b) acid and alkali solutions,
- c) aerated water,
- d) fungi and bacteria.

Research shows how High Temperature weakens polyurethane

Chemical Resistance of Polyurethane <u>BASF Specs:</u>

Acids and alkaline solutions

Elastollan products are attacked by concentrated acids and alkaline solutions even at room temperature. Any contact with these substances should be avoided. Elastollan is resistant to short-time contact with dilute acids and alkali solutions at room temperature.

Chlorine, etc. should be avoided with Polyurethane

			icised				ester		hylene:			
		PVC (F	PVC-P)	Ny	lon	Elastom	er Lining	Low Der	nsity, LDP	Polyur	rethane	
	Concentration	20°c	60°C	20°C	60°C	20°c	60°C	20°c	60°C	20°c	60°C	
									ļ		ļ	
chlorine	10% (dry gas)			×	×	×	×					
	100% (dry gas)			×	×	(Ory & Wet)	(Dry & Wet)	×	×	×	×	
	10% (moist gas)											
chlorine trifluoride		X ^	X.									
chlorine water	2%			×	×			V	V	*	×	
	Sat. solution		X.					V	×			
A Caticfactory												

Satisfactory

Some attack or absorption: the material may be considered for use when alternative materials are unsatisfactory and where limited life is acceptable. When PVC is to be used with such chemicals fullscale trials under realistic conditions are particularly necessary.

Unsatisfactory: so rated because of decomposition, solution, swelling, loss of ductility etc. of the samples tested.

Hot Water and Polyurethane (TPU) lay flat hose:

- TPU has good physical durability, but vulnerable to hot water and some chemicals
- Durability and resistance to hot water & chemicals are dependent on quality of TPU
- Additives can make TPU hose more resistant to UV, but not heat or chemicals

Summary of guidance from working with TPU manufacturers and lay flat hose manufacturers:

- Polyurethane (TPU) hose holds up well for continuous use with water up to 122 °F
- As water exceeds 122°F, reduce working pressure to 60% of working pressure at 167°F
- Maximum water temperature should not exceed 167°F
- It's best to limit time that TPU is exposed to water above 122°F
- Some chemicals in produced, flow back, or treated water can break down polyurethane
- Combination of hot water and chemicals are compounded to weaken polyurethane further

<u>Hot water accelerates hydrolysis in TPU (water molecules react with the TPU which reduces</u> strength & integrity of TPU). Hydrolysis of TPU occurs with extended exposure to:

- High temperature water (as water temperature increases, hydrolysis increases)
- Acid and alkali solutions
- Aerated water
- Fungi and bacteria

Hot Water and Nitrile Rubber lay flat hose:

- Nitrile Rubber lay flat hose is more resistant to heat and chemicals.
- Durability and resistance to heat & chemicals are dependent on quality of rubber
- Additives can make rubber hose more resistant to UV, as well as heat & chemicals
- Proper curing of rubber is critical for durability and resistance to heat & chemicals
- Quality nitrile rubber can be used with water up to 176 °F and/or has chemicals in it
- Hot water & chemicals can damage hose with time and hose should be monitored

Trade off when choosing lay flat hose:

- High quality Polyurethane (TPU) hose is physically more durable
- High quality Nitrile Rubber hose is more resistant to chemicals and heat

Special Rubber Formulation

makes Oroflex 20 more chemical resistant than any other hose

All Oroflex hose has a serial number for tracking and quality control

Hammerhead's Oroflex 20 special formulation makes it the most chemical resistant.

(the materials and processes used to make this hose the best on the market are patented)

Photo of: Polyurethane hose with chemical corrosion

Chemicals in produced water are very corrosive to couplers and other fittings

FracGard coated

Chemical Resistant Options

Hot Dip Galvanized

Several things give lay flat hose a black eye:

- False claims about lay flat hose quality & capabilities
- Problems caused from using the wrong or poor quality equipment
- Problems caused by poor planning, poor processes, poor training

FracGard green coating Chemical Reisistant Tests

The FracGard system has been tested for a period of two years in the chemicals listed below. Testing was conducted at temperatures averaging 75°F and, unless specifically noted, There was no effect on the FracGard system.

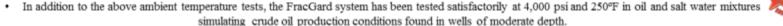
ACIDS

Acetic Acid 25% Boric Acid Citric Acid 25% Formic Acid 10% Hydrochloric Acid 15% Hydrofluoric Acid 40%

Muriatic Acid Nitric Acid 25% Oxalic Acid Phosphoric Acid 50% Sulfuric Acid 50%

ORGANIC LIQUIDS

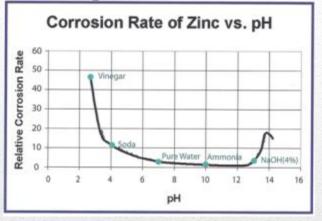
Kerosene


Crude Oil*
Diesel Fuel
Diethylene Glycol
Dipropylene Glycol
Ethylene Glycol
Gasoline
Avgas (Jet Fuel)
Glycerine
Heptane
Hexane
Hexylene Glycol
Isopropyl Alcohol

Linseed Oil Lubricating Oil Methyl Alcohol (softens) Mineral Oil Mineral Spirits Motor Oil Naphtha Octane Pentane Propylene Glycol Sewage Soap Toluol Triethylene Glycol Turpentine Urine Vinegar Water (Distilled) Water (Salt)* Water (Fresh) Xylol Formaldehyde Natural Gas

INORGANIC COMPOUNDS

Aluminum Chloride
Aluminum Hydroxide
Aluminum Nitrate
Calcium Hydroxide
Calcium Sulfate
Calcium Nitrate
Caustic Potash
Copper Nitrate
Ferric Sulfate
Ferric Nitrate
Magnesium Chloride


Magnesium Hydroxide Magnesium Nitrate Magnesium Sulfate Mercuric Chloride Potassium Bicarbonate Aluminum Phosphate Barium Chloride Calcium Chloride Potassium Chloride Potassium Hydroxide Potassium Nitrate Potassium Sulfate Silver Nitrate Sodium Chloride Sodium Hydroxide Sodium Nitrate Sodium Sulfate Sulphur Zinc Chloride Zinc Sulfate

Hot Dipped Galvanized coating (ASTM: A 123 certified)

pH Resistance

Galvanized vs. Epoxy coated

Hot-Dip Galvanized Rebar	Performance & Condition	Epoxy-Coated Rebar		
No	Special Handling	Extensive		
No	Subject to UV Damage	Yes		
No	Touch-up After Placement	Yes		
Equivalent to Black Bar	Overlap Length	Additional Steel Required		
No	Holidays/Pinholes	Yes		
Yes	Fabricate after Coating	Yes		
Excellent	Bond to Concrete	Poor		
No	Underfilm Corrosion	Yes		
Yes	Cathodic Protection	No		
Excellent	Abrasion Resistance	Poor		
All	Installation Conditions	Temperature > 50 F		

Hydrocarbons Benzene (benzole) Toluene (toluole) Xylene (xyole) Cyclohexene Petroleum ethers Heavy naphtha Solvent Naphtha

Alcohols

Methyl parafynol (methyl pentynol) Morpholinoisopropanol Glycerol (glycerin)

Halides

Carbon tetrachloride Amyl bromide Butyl bromide Butyl chloride Cyclohexyl bromide Ethyl bromide Propyl bromide Propyl chloride Trimethlyene bromide (1, 3-dibromopropane) Bromobenzene Chlorobenzene Aroclors & Pyroclors (chlorobiphenyls)

Nitriles (cyanides) Diphenylacetonitrile p-chlorobenzglycyanides Esters Allyl butyrate caproate formate propionate Ethyl butyrate sobutyrate caproate caprylate propionate succinate Amyl butyrate

sobutyrate caproate caprylate Methyl butyrate caproate propionate succinate Benzyl butyrate sobutyrate propionate succinate Octyl butyrate caproate

Butyl butyrate sobutyrate caproate propionate succinate titanate* Propyl butyrate isobutyrate caproate formate propionate Iso-Butyl benzonate butyrate caproate Iso-Propyl benzoate caproate formate propionate Cyclohexyl butyrate *and other unspecified titanates

Chemical Resistance

Phenols

Phenol Cresols (mehtylphenols) Xylenols (dimethylphenols) Biphenol (dihydroxybiphenyl) 2, 4-dichlorophenol p-chloro-o-cresol Chloroxylenols

Amine and Amine Salts Pyridine Pyrrolidine Methylpiperazine Dicarbethoxypiperazine 1-benzhydryl-4-methylpiperazine 2-4-diamino-5-(4-chlorphenyl-6) ethlpyrimidine Hydorxyethylmopholine (hydroxyethyldiothylenimideoxide) p-aminobenzenesulphonylguanidine Butylamine oleate Piperazine hydrochloride monohydrate Carbethoxypiperazine hydrochloride (dry) Amides Formamide Dimethylformamide

Miscellaneous Glucose (liquid) Benzilidonoacetone p-chlorbenzopheone Sodium azobenzensulphonate Melamine resin solutions Crude cascara extract Crueosote Chloroflourocarbons

Problems with Cheap Hoses

Elongation: occurs when the inner fabric (jacket) is not woven optimally to minimize elongation. A properly woven hose jacket should elongate no more than 2%. Cheap hoses often elongate by as much as 12% at working pressure; this causes severe snaking. Snaking across an abrasive surface can tear the outer coating. Severe snaking can push hose onto a road or to roll down a hill. Elongation is relaxed after pressure is released.

Expansion: all lay flat hose will expand some when the hose is pressured up. Extreme expansion occurs when inner fabric is not woven optimally. The fabric weave is what gives the hose it's strength and it is also what prevents the hose from elongating and expanding. Too much hose expansion makes it hard to pig a line effectively and it also puts too much stress on the hose where they meet couplings, which can damage the hose.

Burst at low pressures: There are no standards for lay flat hose larger than 6" diameter. It is common for manufacturers to claim working pressures of 200 psi even if their burst pressures are not much higher than the claimed working pressure. Pressure testing has proven several manufacturers hose to burst with too little margin for safety.

Delamination: when the outer and/or inner lining separates from the woven jacket. This compromises the strength and integrity of the hose and can cause it to burst more easily, leak, and make it much harder for the coupling to have good retention on the hose. Delamination is caused when hose manufacturers cut corners by: laminating the inner and outer liners onto the jacket instead of extruding through the weave, by using cheap raw materials, or by doing a poor job in the curing process. It is common for low cost manufacturers to use cheap raw materials and to significantly reduce curing times.

Leaks within a few feet of the Coupling: are often caused when the coupling damages the inner lining of the hose, which causes water to leak into the fabric woven jacket until it finds a weak place in the outer lining to leak out. Several things may cause this: sharp edges on the coupler nipple grooves or overtightening the couplers retention bolts which hold the coupler to the hose; bot situations can cause a "bite" into the inside of the hose.

(Poor quality hose or poor quality couplers* can force you to tighten the bolts extra tight to keep the coupling from coming off or slipping or leaking.)

*High quality couplings will hold even poor quality hose securely without damaging it, even at pressures well above the burst pressure of the hose.

Cheap hoses fail because:


- Use of cheap materials.
- Cut corners on production of the hose.

Results: hose that looks fine when new, but don't meet specs and have many problems

(problems illustrated below and on next page)

Delaminating

Cheap Hose problems continued:

Snaking

Burst at low psi

Chemical Deterioration

